
Crash Course 1: Introduction to 
Processing



Welcome to Introduction to Processing!
Here’s what we’ll be covering:

• What is programming/coding?

• What is Processing?

• Pre-defined functions
• rect()
• line()
• ellipse()
• random()
• fill()
• print() and println()

• Summary



What is programming?

• Programming is a creative process which provides instructions for a computer. 
However computers don’t understand the meaning of words like humans do - so 
how do we write something that a computer will be able to understand?

• Programming languages allow us to use high level commands that make sense to 
us, and with the use of a compiler convert these into low level commands (often 
a series of zeros and ones) that the computer can interpret

• There are multiple programming languages, such as Python, C#, C++, Java, and 
many more which all have their own advantages and disadvantages. Processing is 
one of these programming languages.



What is programming? (2)

• Due to the highly technological world we live in, programming is essentially in 
every aspect of our lives. From the phones we use, to the cars we drive - they all 
rely on some sort of programming

• Coding is the basis of fields such as software engineering and computer science, 
but can be found and applied in virtually all industries, especially in electronics, 
automation, app development, business, e-commerce, web design or even 
medicine

• It’s an extremely desirable and sought-after skill for employment and post-
secondary education in today’s increasingly technology dependent society



What is Processing?

• Processing is a user-friendly, open source, Java-based programming language 
which is somewhat of a sketchbook, enabling you to code in a very visual way

• You can start your own programming adventure by downloading the Processing 
IDE (Integrated Development Environment)

• Link to download Processing: https://processing.org/download/

• Detailed reference for Processing: https://processing.org/reference/

• Note that most lines of code must end with a semicolon (;) to be compiled 
properly

https://processing.org/download/
https://processing.org/reference/


Predefined functions

• A function is a small, modular, unit of code that can be “called” to 
complete a defined task

• Functions can be used repetitively

• They can be user-defined (created by you) or predefined (created by 
the makers of Processing)

• Predefined functions are free for you to use and are stored in a 
library included in your download of Processing

• For now, we will focus only on predefined functions



Predefined functions (2)

• The names of predefined functions are key words recognized by the 
compiler

• Some examples of predefined (or library) functions are rect(), size(), 
ellipse(), random(), print(), println(), fill(), stroke(), and line()

• Most functions require inputs or parameters to be put between the 
brackets to specify details that influence the function’s output

• The size() function sets up the size of your sketching/display window 
and requires two parameters: the width and the height

• Typing in the IDE size(500,500); opens a 500 x 500 pixel window (go 
try it!)



Predefined functions – rect()

• A function like rect() will require four parameters or inputs to draw a rectangle: 
an x-coordinate, a y-coordinate, width and height

• Syntax: rect(a, b, c, d);

• For instance, rect(100, 100, 50, 50);, when compiled, draws a square with width 
and height equal to 50 units, positioned at (100, 100) on the sketching window

• Note: syntax is just a fancy word for “grammar”, the correct way to write code so that the compiler (what translates your code into 0s and 1s) can understand it



Predefined functions – rect() 

Note that on the Processing sketching 
window, x values increase from left to 
right but unlike a normal Cartesian 
graph, y -values increase from top to 
bottom



Predefined functions – line()

• The line() function also requires four parameters: the x and y 
positions of an initial point as well as the x and y positions of a 
terminal point

• Syntax: line(x1, y1, x2, y2);



Predefined functions – line()

• For example, line(200, 300, 400, 500); generates a line connecting the 
points (200, 300) and (400, 500)



Predefined functions – ellipse()

• The ellipse() function in Processing usually requires four parameters: 
the x and y coordinates of its centre, as well as its width and height

• If the width and height are equal, you have a circle

• Syntax: ellipse(a, b, c, d);



Predefined functions – ellipse()

• For example, ellipse(250, 250, 100, 100); creates a circle at (250, 250) 
with a height and width of 100 units (a diameter of 100 pixels)



Predefined functions – random()

• random() outputs a random number
• For instance, random(15) will return a random number from 0 up to 

but not including 15 

• random(5.7, 15) will return a random number from 5.7 up to but not 
including 15

• Random is an example of a function that has optional parameters -
not all parameters have to be filled in, as they have some default 
value

• Syntax: random(high); or random(low, high);



Predefined functions – fill()

• The fill() function allows you to colour shapes according to the RGB 
(Red, Green, Blue) colour scale with values from 0 to 255

• The fill() function takes three parameters

• fill(0, 0, 0); fills with black

• fill(255, 255, 255); fills with white

• Any other colour is generated by having various numbers in the first 
position (amount of red), in the second position (amount of green) 
and in the third position (amount of blue)



Predefined functions – fill()

• Syntax: fill(v1, v2, v3);



Predefined functions – fill()

• For example, when you write fill(255, 0, 0);, you have turned on all 
the red light R but have 0 for the amounts of green and blue light G 
and B (hence you see red)

• Note that the colour black may be achieved with a single parameter 
fill(0), because it assumes the other parameters to be the same and 
similarly the colour white may be obtained with fill(255)

• As you might suspect, any value in between 0 and 255 would 
generate some other colour on the grayscale

• stroke() works exactly like fill() but is used to colour lines instead of 
shapes



Predefined functions – fill()



Predefined functions – print() and println()

• The print() function prints text or function outputs to the console
(which is the black box underneath your code)

• To print a message, you must have double quotations, i.e. 
print(“Coding is fun.”)

• The print() function prints in the same line every time it is called

• The println() function is similar to the print() function but it prints in a 
new line every time it gets called (similar to pressing the “Enter” key 
on a keyboard before adding more text)

• Syntax: print(what) or println(what)



Predefined functions – print() and println()

Don’t forget that the Processing reference page 
linked on Slide 5 contains all the information you 
need for each predefined function! 



Summary

• Well would you look at that, you’re coding! We’re only going up from 
here! Now let’s review what we’ve learned.

• In this crash course, we learned what coding is all about and were 
introduced to Processing

• Computer programming consists of writing commands in source code 
that get compiled into machine code (0s and 1s) for execution

• Coding can be found in many industries and is consequently a very 
desirable skill to have

• Processing is an open source, Java-based language with an integrated 
development environment (IDE) for you to write your code in, which 
helps people learn to code in a visual way



Summary (2)

• Processing offers several predefined or library functions such as 
rect(), line(), ellipse(), random(), fill(), print(), and println() that are 
ready to complete basic tasks for you

• Functions are small chunks of code that can be used repetitively

• Documentation for predefined functions covered and many more can 
be found on the Processing website at 
https://processing.org/reference/

• You have completed: 1. Introduction to Processing

• Up next: 2. Variables and Data Types

https://processing.org/reference/

